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of this reaction, produced bicyclo[4,2.0]octane by oxidative decomposition 
(bp 129-131 0C (760 mmHg)) which appeared to be the trans isomer, while 
the c/s-2-nickelahydrindan complex afforded the cis isomer (bp 136-139 
0C (760 mmHg)); cf. bp 136-138 0C (760 mmHg) of A. T.BIomquist and 
J. Kwiatek, J. Am. Chem. Soc, 73, 2098 (1951). Details are given in ref 
6b. 

(14) The product was compared with an authentic sample of cis- and trans-
1,2-dicyanocyclobutane obtained from Aldrich Chemical Co.: NMR & 3.45 
(m, 2 H), 2.40 ppm (broadened d of d, 4 H). The GLC trace was similar to 
that of the commercial isomer mixture. 

(15) A. Miyashitaand R. H. Grubbs, unpublished results. 
(16) Division of Chemistry and Chemical Engineering, California Institute of 

Technology, Pasadena, Calif. 91125. 
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bond cleavage in the metallacyclopentanes also gave high yields 
of C-C bond cleavage products in the metallacyclohexanes. 
For example, the five-coordinate nickel complex 3 produced 
ethylene and Ni(C2H4)(PPh3)2 (5) as the major products.4 

The chemistry of this complex will be examined first. 

(Ph,P),Ni 

6 .3 

CH4 + C H 2 = C H 2 + I l 4- C5H10 

15% 40% 8% 36% 

+ (Ph5P)2Ni(C2H4) 
5, 39% (based on 3) 

Either a- or /3-C-C cleavage would result in the ul t imate 
production of a carbenoid complex which could yield the ob­
served products (Scheme I) . 

Scheme I 

Carbon-Carbon Bond Cleavage Reactions 
in the Decomposition of Metallacycles 

Sir: 

We recently reported that trisphosphine and five-coordinate 
nickelacyclopentanes and titanacyclopentanes decomposed 
by /3-C-C bond cleavage to produce ethylene. To determine 
if C-C bond cleavage would occur in systems which could not 
produce stable metal-olefin complexes, metallacyclohexanes 
were prepared. Bis(triphenylphosphine)dichloronickel(II) and 
titanocene dichloride were treated with 1,5-dilithiopentane (1) 
at low temperature to yield 2 and 4 which were purified and 
analyzed by procedures similar to those used in the preparation 
of the related metallacyclopentanes.1 a-2-3 

(Ph11P)2NiCl2 + LiCR2(CH2O3CR2Li 

(Ph,P).,Ni 

(77-C1HoJiCl2 + LiCR2(CH2)^CR2L 

The yields of the decomposition products of 2 ,3 , and 4 and 
4 are given in Table I. Those conditions which resulted in C-C 
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Based on past results /3 cleavage would be expected to be the 
major pathway of decomposition of metal alkyls; however the 
o cleavage route could be demonstrated to be the major route 
by deuterium labeling. Tris(triphenylphosphine)pentameth-
ylenenickel(II)-2,2,f5,fJ-^4 (3b) was prepared and allowed to 
decompose in the presence of cyclohexene. Up to 10% (per Ni) 

^ ) + O H C X (Ph,P). 

D 
3b 

yields of norcarane (6) of high isotopic purity were isolated.5 

The isotopic purity decreased from 90 to 70% as the reaction 
progressed.6 This suggested that the loss of isotopic purity was 
due to some competing reaction which moved the label from 
the 2,6 positions.7 The fact that the isotopic purity was above 
50% demonstrated that a-C-C bond cleavage occurred first. 
/3 cleavage would have given a maximum of 50% purity since 
a labeled carbon and an unlabeled carbon become equivalent 
in the intermediate resulting from /3 cleavage.8 Other evidence 
for initial a-C-C bond cleavage was the lack of C3 products 

Table I. Decomposition Reactions of Metallacyclohexane Complexes" 

compds 

Ni(CH2)5(PPh3)3 (3a) 
3a + PPh3

c 

Ni(CH2)5(PPh3)2(2a) 
2a + PPh3^ 
2a + hvd 

Ti(CH2)5Cp2 (4a) 
4a + PR3« 
4a + hvh 

reaction 
condition, 0 C, h 

23,24 

0,2 
23,6 

- 4 0 , 3 

CH4 

15 
4 
3 
7 

30 
1 

44 
60 

C2H 

40 
64 

8 
56 
43 e 

1 
15 
7 

percent of decomposition prod 
* C3H6 

0 
0 
0 
0 
5 
0 
4 
0 

C4H8 c 

1 
1 
5 
1 
5 
1 

20 
1 

JCtS* 

-C5H10 

8 
4 

68 
6 

15 
34/ 
12/ 
24/ 

C5H10 

36 
27 
16 
30 

0 
63 

5 
8 

" Decomposition reactions were performed in toluene solution for 2a, 3a, and decalin solution for 4a. * Product gases were analyzed by GLC 
in the vapor phase as well as the solution phase. These were average values of several experiments. c Up to ten times excess triphenylphosphine 
was used. d Photolysis was performed in a quartz tube. During photolysis 54% of 2a decomposed, while only trace acmounts of 2a decomposed 
in the dark. Trisphosphine complex, 3a, gave almost the same decomposition pattern as 2a . e This value contains 46% ethane. / No cyclopentane 
was observed but n-pentane was observed. « Tertiary phosphines such as PEt3, P(«-Bu)3, PPh3, or PCy3 were used and each phosphine showed 
almost the same effect on the decomposition reaction of 4a. h By photolysis 20% of 4a decomposed but 4a was stable at - 4 0 0 C in the dark. 
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as would have been expected from the metallacyclobutane 
produced from initial /3 cleavage.9 Evidence for a C4 fragment 
came from quenching studies. Treatment of partially decom­
posed solutions of 3a with DCl or bromine produced terminally 
labeled butanes.11 

DCl 
DCH2CH2CH2CH2D + other products 

8% (per Ni) no (CH2DCH2CH2D produced) 
92% isotopic purity 

BrCH1CH2CH2CH2Br 
4% (per Ni) 

The proposed carbenoid intermediate provides a route to the 
methane produced from these two complexes. When either 3b 
or 4b was allowed to decompose the majority (>80%) of the 
methane was CH2D2. Thus, the majority of the methane re­
sulted from the a carbons of the metallacycles. The ligands 
were the source of the other 2 hydrogens. When either 4-^io13 

or 3-^i814 was decomposed, CH 2D 2 was again the major 
product. The greater yield of methane from the titanocene (4) 

3-d1;i 

P h - P - N i - C H , - - C H 2 D 2 

PhLn 

species suggested that the intramolecular C-H addition into 
the cyclopentadienyl ligand was more facile (compared with 
other reactions) than ortho metalation of the phosphine li­
gand. 

This rapid intramolecular reaction also accounted for the 
low yield («1%) of norcarane produced when 4 was allowed 
to decompose in cyclohexene. 

A very surprising reaction was observed when the nickel 

Scheme II 
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complex 3 was decomposed in the presence of other olefins. 
1,7-Octadiene was catalytically converted to cyclohexene (up 
to 560%/Ni) and ethylene. Also, propylene was converted to 
2-butene and ethylene. These were the products of an olefin 
metathesis reaction.^ As further confirmation, 3-d4 (3b) was 
used in the reaction with propylene. The propylene recovered 
at the end of the reaction contained propylene-/,/-^2

16 

(40%/Ni), a characteristic product of metathesis of primary 
olefins.17 The by-products indicated in Scheme II show why 
the metathesis activity decayed rapidly.18 

The competitive C-C bond cleavage (metathesis), reductive 
elimination, and /3-hydride transfer reactions of the proposed 
metallacyclobutanes (7, 8) were similar to the reactions of 
nickelacyclopentanes and nickelacyclohexanes19 and the in­
termediates resulting from the reaction of other carbene and 
alkylidene complexes with olefins.20-21 

Carbon-carbon bond cleavage can be a facile process in 
simple organometallic complexes and does not require the in­
tervention of multimetal centers such as metal clusters or metal 
surfaces. 

Acknowledgment. The financial support of the National 
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Reaction of the Water-Soluble Reagent 
jY-EthyI-N'-(3-dimethyIaminopropyI)carbodiimide 
with Nucleophiles: Participation of the Tautomeric 
Cyclic Ammonioamidine as a Kinetically 
Important Intermediate 

Sir: 

Sheehan, Cruickshank, and Boshart1 reported that N-
ethyl-A"-(3-dimethylaminopropyl)carbodiimide (I), a 
water-soluble peptide coupling reagent, could undergo ring-
chain tautomerism. This hypothesis was confirmed experi­
mentally by Tenforde, Fawwaz, Freeman, and Castagnoli2a 

who used spectroscopic evidence to show that only some 7% 
of the total reagent exists as carbodiimide in neutral aqueous 
solution. 

This communication reports data on the reactions of acetic 
acid and water with I consistent with the mechanisms of 

Scheme I 
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Figure 1. Dependence of rate constant on pH for hydrolysis of I (O); N-
ethyl-A"-(3-trimethylammoniopropyl)carbodiimide (•); N.N'-di-n-
propylcarbodiimide (D). The pH dependence for the reaction of I in 1 M 
acetate buffer (A). Lines for the hydrolyses of carbodiimides are theo­
retical and are from the following equations: k = 4 X 10~6 + 10-3/C1 + 
10-32/aH) + 2.5 X IO-2 [OH"] (O); k = 320aH + 0.14 [OH"] (•); k 
= 400aH + 1.4 X 1O-2 [OH-] (D). Conditions are 25 0C, aqueous solu­
tion, ionic strength made up to 1 M with KCl. 

Schemes I and II where the only participation of free carbo­
diimide is in the alkaline region of pH. 

We report here the pH profiles for hydrolysis of 7V-ethyl-
7V'-(3-trimethylammoniopropyl)carbodiimide perchlorate, 
iV,iV'-di-«-propylcarbodiimide, and the coupling reagent I at 
zero buffer concentration; good pseudo-first-order kinetics 
were observed which obey equations given in the legend to 
Figure 1. 

Water hydrolysis of the trimethylammonio carbodiimide 
model for VI has an upper limit for the rate constant (1O-6 s-1) 
close to that estimated from the Br^nsted plot for nucleophilic 
attack.2b The proportion of free carbodiimide in the region of 
pH 7-10 present as the form Vl is ~0.1 using data from Ten­
forde and co-workers.2a Thus [VI]/[III]2c = K2K3/K4 « 0.1 
and, assuming K4 represents a normal pKa for a dimethyl 
tertiary amine (9.99 for dimethylpropylamine),3 then K2K3 
« 10- " . The rate constant for the mechanism through water 
attack on the carbodiimide VI therefore has the upper limit 
0.1 X 1O-6= 1O-7S-1; the observed value of 4 X 1O-6 s"1 in­
dicates that the carbodiimide mechanism for this region of pH 
can only take at most V40 of the total reaction flux. At this stage 
we are not able to say whether the plateau is due to water at­
tack on III or hydroxide attack on II. 

Titration of reagent I with acid and base reveals two acidic 
groups of p/wa

 = 3.1 and 11.1, respectively. We may calculate 
a pKa for an ammonioamidinium dication such as II, using the 
data of Charton,4 to be 3.83; we take the c\ of the ammonio 
substituent to be 0.73.5a Perusal of Charton's correlation in­
dicates that a conservative estimate of error would be ±2 pK 
units. The apparent titration pK.d in the acid region may be 
derived from Scheme I (eq 1); substituting for A ^ 3 and K4 
leads to an apparent pKa corresponding to Ki which therefore 
has a value (3.1) consistent with that for ammonioamidinium 
ionization within the limits of the prediction. 

[H] 

[total I]K4AH 
K1K2K3(X + K4/aH + K4JanK3 + K4JK2K3 + OnK4ZK1K2K3) 

(1) 
The value of 11.1 is high for the p/Ca of a dimethyl tertiary 

amine.3 The apparent pK.j may be derived assuming equilib-
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